Cumulative frequency can explain cognate facilitation in language models

UK Research and Innovation

Irene E. Winther¹¹², Yevgen Matusevych² and Martin J. Pickering³

UKRI Centre for Doctoral Training in Natural Language Processing

School of Informatics, University of Edinburgh

COGNATE FACILITATION EFFECT

Cognates Words that share form and meaning across languages. They have a processing advantage relative to non-cognates.

- Dutch-English bilinguals read example (a) faster than (b) (Bultena et al., 2014)
 - a. The residents disliked the **winter** (cognate: Dutch *winter*)
 - b. The residents disliked the **prison** (control: Dutch *gevangenis*)

CUMULATIVE FREQUENCY HYPOTHESIS

- Bilinguals encounter cognates more frequently than non-cognates due to their identical form. Cognate effect just a frequency effect in disguise?^{2,3}
 - Cognates do not have a special status in the memory
 - Evidence is non-conclusive: some argue for special status instead⁴

Can a computational model that doesn't assign special status to cognates show the cognate facilitation effect?

- Cognate processing in a computational language model (LM) to test cumulative frequency hypothesis
 - Can count exact frequencies in input data
 - Cognates and controls treated the same way by model
 - Compare LM predictions to human data

METHOD

- LSTM-LM⁵ trained on 2 languages: first language (L1) Dutch second language (L2) English
 - Wikipedia-corpora (2M shuffled sentences) 80/10/10 training/test/valid
- Training conditions to explore
 - 1. Language mixing
 - NON-MIX L1 data followed by L2 data
 - MIX L1+L2 data shuffled per sentence

2. L1:L2 ratio

- 75:**25** 75% L1 data 25% L2 data
- 50:**50** equal split

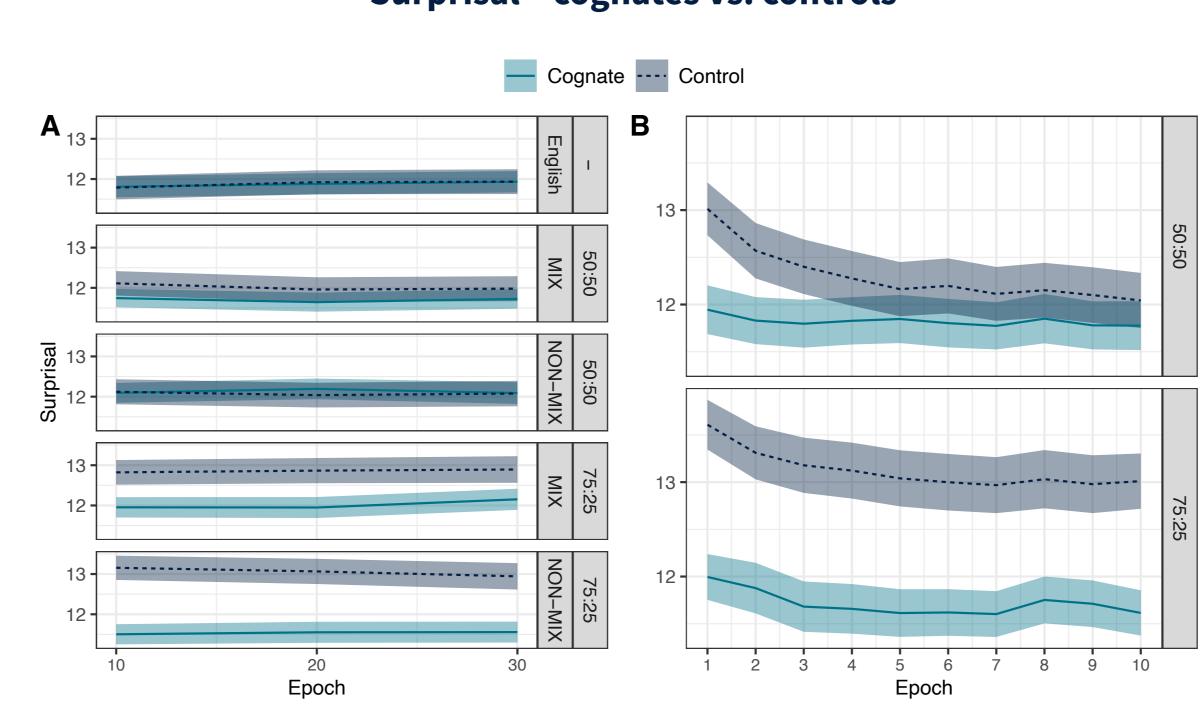
3. L1 pretraining

- PT LM trained on L1 (30 epochs) → L1+L2 data (10 epochs)
- **NPT** LM trained on L1+L2 data (30 epochs)

EVALUATION

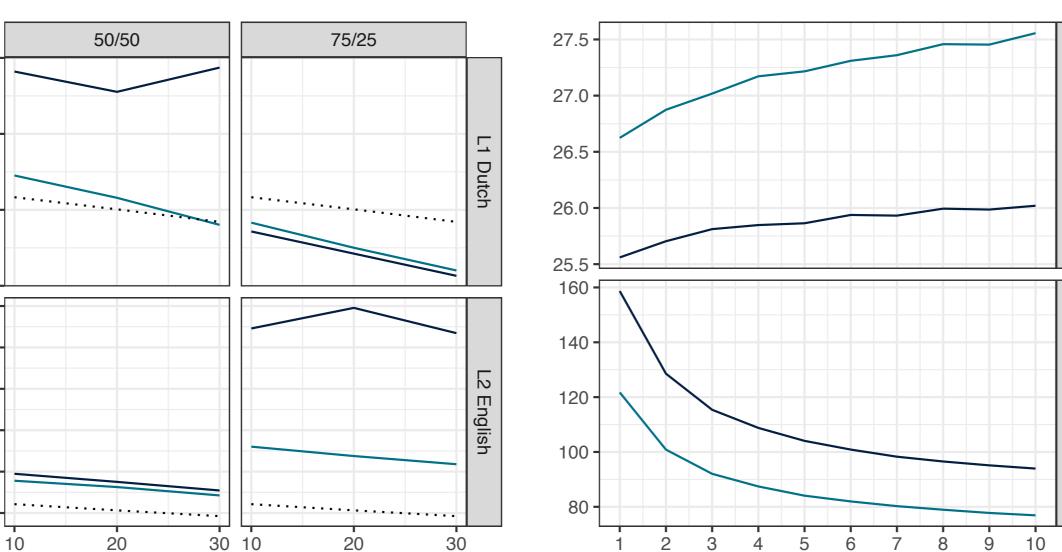
Cognate effect Surprisal on cognates vs. controls for sentence stimuli from Bultena et al. (2014) (plots A & B)

- Surprisal is a measure of processing effort⁶ correlates with human reading times⁷
- Expectation: lower surprisal for cognates


Linguistic accuracy Perplexity on L1 and L2 test sets (separately) – compare to monolingual LMs (plots C & D)

RESULTS

PT Models


Surprisal – cognates vs. controls

Perplexity on L1 and L2 test sets

··· Monolingual (Dutch or English) — MIX — NON-MIX

Epoch

Epoch

SUMMARY

Do models exhibit a cognate effect?

- 2 out of 6 models displayed the effect
- They have significantly lower surprisal for cognates than controls
- Common properties of the two models associated with high L2 perplexity
 - Higher exposure to L1 (75:25 language ratio)
- Presentation of L1 before L2 (NON-MIX or PT)

Does the magnitude of the effect depend on L2 perplexity?

- Difference between cognates and controls larger for models with low L2 linguistic accuracy (L2 "proficiency"), measured by perplexity
- Same trends in humans: larger effect in bilinguals with low L2 proficiency^{1,2}

Does word frequency explain the effect better than the cognate status?

- Yes, cognate status not significant when frequency included as a predictor
- Higher frequency of cognates (compared to non-cognates) facilitates their processing in sentences

Do the results hold for other language pairs?

 Yes, we ran an identical study using Norwegian-English training data and test stimuli

CONCLUSION

- Findings support the cumulative frequency hypothesis
- Cognate effect Lack of exposure to non-cognate words?
- Cognate words are like high-frequency words for less proficient speakers; non-cognates are like lower-frequency words
- Differences in exposure to the two types of words decrease with increased proficiency → smaller cognate effects

REFERENCES

- 1. Bultena, S., Dijkstra, T., & van Hell, J. G. (2014). Cognate effects in sentence context depend on word class, L2 proficiency, and task. *Quarterly Journal of Experimental Psychology*, 67, 1214–1241.
- 2. Pivneva, I., Mercier, J., & Titone, D. (2014). Executive control modulates cross-language lexical activation during L2 reading: Evidence from eye movements. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 40, 787–796
- 3. Strijkers, K., Costa, A., & Thierry, G. (2010). Tracking lexical access in speech production: Electrophysiological correlates of word frequency and cognate effects. *Cerebral Cortex*, 20, 912–928.
- 4. van Hell, J. G., & Dijkstra, T. (2002). Foreign language knowledge can influence native language performance in exclusively native contexts. *Psychonomic Bulletin & Review*, 9, 780–789.
- 5. van Schijndel, M., & Linzen, T. (2018). A neural model of adaptation in reading. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.*6. Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In *Proceedings of the Second Meeting of the*
- North American Chapter of the Association for Computational Linguistics.

 7. Goodkind, A., & Bicknell, K. (2018). Predictive power of word surprisal for reading times is a linear function of language.
- 7. Goodkind, A., & Bicknell, K. (2018). Predictive power of word surprisal for reading times is a linear function of language model quality. In *Proceedings of the 8th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018).*